pypsdier

Release 1.1.1

Nov 20, 2020

Documenation:

1 Tryitout!

Index

17

pypsdier, Release 1.1.1

pypsdier is a python library to solve pde reaction-difussion equations, considering inmmobilized catalyst particles.

Documenation: 1

pypsdier, Release 1.1.1

2 Documenation:

CHAPTER 1

Try it out!

* In Google Colab.
e In MyBinder.

1.1 Introduction

1.1.1 Objective

Around 2008, we started the development of a numerical implementation of generic reaction diffusion equations for
reactors using enzyme immobilization on small porous particles. The objective was (and still is) to provide a simple
interface to solve reaction diffusion equations.

The immobilization of enzymes is a requisite for the re-use of these catalysts in repeated cycles in batch configuration
or in continuous reactors. The recovery and/or retention of the enzyme catalyst is technical and economically feasible
when micrometric or milimetric particles are used. The covalent attachment of the enzyme molecule to a porous solid
support have shown high stabilization with different enzymes. Therefore, immobilization is neccessary and convenient
for the efficient utilization of enzymes in technological processes and industrial settings.

Simulation of the concentrations of substrates and products is, nevertheless, harder than expected due to the complexity
of the reaction and diffusion processes.

The reaction takes places then in a heterogeneous system composed by the solid catalysts particles and the bulk
liquid. The catalysis process is carried out inside the particle porous instead of the bulk liquid solvent. The immediate
consequence of this fact is that, along with the reaction, mass transfer occurs inside the particle and between the
particle and the bulk medium. The modeling of this heterogeneous process must considers reaction and diffusion
components in the reactor performance equation.

1.2 Installation

The repository for the code is hosted at https://github.com/sebastiandres/pypsdier.

https://htmlpreview.github.io/?https://github.com/sebastiandres/pypsdier/blob/master/demo/colab_test.html
https://htmlpreview.github.io/?https://github.com/sebastiandres/pypsdier/blob/master/demo/binder_test.html
https://github.com/sebastiandres/pypsdier

pypsdier, Release 1.1.1

The current implementation has been developed in Python 3. To use as a simulation engine, the libraries numpy, xIwt,
scipy and matplotlib are needed.

1.2.1 Install from pypi

You can install the library from pypi. This is the safe way. Don’t stray from this path.

pip install pypsdier

1.2.2 Install from repository

You can install the library directly from the latest available version on github. This is good for testing the library, but
might encounter some bugs, in which case you should let us know!

’pip install git+https://github.com/sebastiandres/pypsdier.git

1.3 Examples

1.3.1 Example in Google colab

Here is an executable example using Google Colab. Requires a google account (but it’s worth it :).

1.3.2 Example in mybinder

Here is an executable example using MyBinder. Does not requires any account, but it will not store results.

1.3.3 Code example

To run all the next lines you need to install the library. We hope you’ll appreciate that all you need is to define the inputs
and plot options, and run the simulation. Libraries and outputs are silently handled. Saving, plotting or exporting the
results is trivially easy for the user.

We’ll define the simplest experiment possible.

The first thing is to setup the inputs and plotting options. This requires to define dictionaries with specific keys.

def MichaelisMenten (S, EO, k, K):
"""Definition for Michaelis Menten reaction with inputs EO [mM], k [1/s] and K [mM]"""
return (-k*E0%xS[0]/(K+S[0]),)

inputs = {}

inputs(["SimulationTime"] = 120. # [s]

inputs["SavingTimeStep"] = 1. # [s]

inputs["CatalystVolume"] = 0.5 # [mL]

inputs["BulkVolume"] = 100.0 # [mL]

inputs["Names"] = ('Substrat',) # legend for the xls, reports and plots
inputs["InitialConcentrations"] = (1.3,) # [mM]
inputs["EffectiveDiffusionCoefficients"] = (5.3E-10,) # [m2/s]
inputs["CatalystParticleRadius"] = [40.0E-6, 60.0E-6, 80.0E-6] # [m]
inputs|["CatalystParticleRadiusFrequency"] = [0.3, 0.5, 0.2] # []

(continues on next page)

4 Chapter 1. Try it out!

https://pypi.org/project/pypsdier/
https://htmlpreview.github.io/?https://github.com/sebastiandres/pypsdier/blob/master/demo/colab_test.html
https://htmlpreview.github.io/?https://github.com/sebastiandres/pypsdier/blob/master/demo/binder_test.html

pypsdier, Release 1.1.1

(continued from previous page)

inputs["ReactionFunction"] = MichaelisMenten # function
inputs["ReactionParameters"] = (41 , 0.13) # [1/s], [mM/s], parameters
inputs["CatalystEnzymeConcentration"] = 0.35 # [mM]

plot_options = {}

plot_options["title"] = "Michaelis Menten Reaction"

plot_options["label x"] = "Reaction time [s]"

plot_options(["label y"] = "Concentration [mM]"

plot_options["ode_kwargs"] = {'label':'ode', 'color':'black', 'marker':'', 'markersize
—':6, 'linestyle':'dashed', 'linewidth':2}

plot_options|["pde_kwargs"] = {'label':'pde', 'color':'black', 'marker':'', 'markersize
—':6, 'linestyle':'solid', 'linewidth':2}

plot_options(["data_kwargs"] = {'label':'exp', 'color':'red', 'marker':'s', 'markersize
—':6, 'linestyle':'none', 'linewidth':2}

plot_options["data_x"] = [0.0, 30, 60, 90, 120]

plot_options(["data_y"] = [1.3, 0.65, 0.25, 0.10, 0.0]

Creating a new simulation requires to use a new simulation interface.

import pypsdier
SIM = pypsdier.SimulationInterface ()
SIM.new (inputs, plot_options)

To simulate you need to the corresponding method:

SIM.simulate ("pde")
SIM.simulate ("ode™)

At any point of the code you can use the status method to know if the required libraries are installed, what are the
inputs, plot options and simulation statuses.

’SIM.status()

You can plot the results with the plot method. If needed, you can update the plot_options dictionary. Use plot? to
know available plotting arguments.

’SIM.plot()

You can generate and download a compressed simulation file, so you can late load your results

’SIM.save("SIM.rde")

Or you can generate an excel file to explore the results to use a more familiar program.

’SIM.export_xls("SIM.xls")

1.4 Problem

1.4.1 Subtitle

Some text

1.4. Problem 5

pypsdier, Release 1.1.1

1.4.2 Subtitle

Some other text

1.5 Equations

1.5.1 Variables and parameters

Let’s consider a substance .S. Let’s call:

* Sp(t): Concentration of the substance on the bulk (liquid) phase, outside all particles. The substance could be a
substract or a product of the reaction. It is usually measured in mols per liter.

* V}: Total volume of the bulk (liquid) phase. Usually measured in liters.

* S(t,r, R;): Concentration at time ¢ and radial position r, inside a particle of radius R;. Measured in the same
units of Sp(t).

* f(R): Particle size distribution. Typically, this is a discrete approximation of the real (measurable but ultimately
unknown) particle size distribution. For practical purposes we will consider a finite discrete distribution with
N, different particle sizes, where the probability p; for a particle having radius R; fori € {1,2,--- , Ng} with

N
i pi =1

* Vpg: total volume of particles, experimentally obtained with the total weight and density of the catalyst particles.
Measured in the same units as V.

¢ Dg: Effective diffusion coefficient of substance .S inside the (porous) particle. It has the units meters squared /
second.

* v.: Effective reaction rate at which the amount of substance .S changes without considering diffusional restric-
tions. If v, > 0 it is ussually called a product, while v, < 0 is called a substract. This is usually measured in
the units of .Sy, per second.

1.5.2 Impact of a particle distribution

We define Ny the number of different particle radii. A discrete particle size distribution has probability p; for a
particle having radius R;, fori € {1,2,--- , Ng} with Zfi“l p; = 1. The probability p; is interpreted in a frequentist

Nr

approach: it is simply the fraction of particles of the size R;, given by p; = n;/n with n = >"."] n; being the total

number of particles.

We can then work out explicitely the total number of particles from the total volume of the particles:

Jn 4 N 4
Vg = i—RP = in — R}
Ngr
47
=n 3D piRl
=1

That is, the total number of particles is given by the total volume and the expected volume of a single particle.

ni = pin = p— VB
(2 7 l%E[Ri;]

Let’s consider a numerical example. Let’s imagine we have a total volume of Vx = 10 [ml] = 1.0 E — 8 [m?]
Let’s consider the following distribution p; = 0.4 and p» = 0.6, for Ry = 0.9Ry and Ry = 1.1Ry, where Ry =
6.5F — 9 [m] respectively.

6 Chapter 1. Try it out!

pypsdier, Release 1.1.1

We can compute the following values:
* The expected radius is E[R] = p1 Ry 4+ paRa = XaX
* The volume for a expected radius is 37(E[R])® = X2 X
* The number of particles is Vz/37(E[R])® = XzX.
* The number of particles of size R and R; are ny = pin = XaxX y ny = pin = XX, respectively.

¢ The total surface is

1.5.3 How to model the effective reaction rate

The effective reaction rate v, is a function of several terms, and occurs only inside the particles, where the catalist is
attached to the surface of the porous structure. In a particle of radius R;, it would be:

ve(t, 7, R;) = ve (S(t,7, R;), E(t,r, R;), other relevant parameters)
~ v (S(t,r, R;i), Emaax, other relevant parameters) x I(t) x Z(r, R;)
Where:
* v(S, E, other relevant parameters): the reaction rate, measured in the units of S, per second.

 I(t): Enzime Inactivation. It only has time dependance, being bounded between O and 1 and decreasing:
0 < I(t) < 1. It has no units. It models tha catalyst inhibition growing over time.

* Z(r, R;): Enzime radial distribution, that only has space dependance and being non-negative, 0 < Z(r, R;) and
such that the total enzime applied to all particles is a known value Fj:

Ng ;

E —i e ErnaxZ (7, Ri)4mr?

0=) ny maz 2 (T, R;)dmrdr
i=1 0

NR n; Rl
ny - /O Braz Z(r, Ry)dmrdr
=1

NR R1
=nE, a4 Zpi / Z(r, Ry)r’dr
i=1 0
Here we have used n; the number of particles of size R;, and n the total number of particles, and the relationship
between volume and particle size distibution:
Vr Vgr

n = =

FEIR] Y pignR?

1.5.4 The equations

The equations, boundary conditions and initial conditions are given for Sy(¢) and S(t, r, R;).

The reaction diffusion equation, for¢ > 0 and 0 < r < R;:

oS 928 208
E(t,r, R;) = Dg <8r2(t’ r,R;) + ;a(t,r, Rl)) —ve (S(t,r, Ry)) I(t)Z(r, R;)

The boundary condition at the center of the particle for ¢ > 0:

08

1.5. Equations 7

pypsdier, Release 1.1.1

The boundary conditions at the surface of the particles are

Sp(t) = S(t, Ri, R;)

and
ds V. oS
—(t,R;,R;) = —3Dg——>——F |R* —=
a) SViE [R?] [or T_R]
Ngr
c tv iy L3
= *3DS+R3 > R W
Vr Zi:l Ri i=1
The initial conditions are
Sp(0) = Sp

S(0,m, R;)) =0for0 <r < R;andi € {1,2,--- ,Ng}

1.6 Implementation

1.6.1 The Numerical Discretization

Consider the following discretization, with IV, intervals, thus having Ar; = ﬁ'

x

Let’s define the approximations:
52 = Sb(TLAt)
5?’1» = S(nAt,jAn-, Rl)

Consider the figure:

and timestep At.

0.1 811 S C §h Sha
0Ann 1A 2Ann 3 An jAn N Ari=R1
$.2 S22 52 S5 52 .2
OAr, 1Arm 2Ar 3 AR J A N Arz =Rz
B, Hs B B, g, s
OArs 1Ar3 2Ars 3 Ars jArs N Ars=R3

For each timestep At, we have NV, + 1 unknowns in each particle size, and one unknown in the bulk phase, so the total

number of unknown are (N, + 1)Ng + 1.

The time partial derivative can be discretized as:

9 gntt _gn

S S
22 (nAL, jAr, Ry) ~ 29
8t (n t?] Tle) At

Chapter 1. Try it out!

pypsdier, Release 1.1.1

The central implicit discretization for the first and second partial space derivatives are:

n+1 _ §n+1 ~n

on
LS54 —Sj—1,

0S5

: 18541 1
—Z(nAt. iAr;. R L 7j+10 j—1,
or (n s JAT;, 1) 2 2AT‘Z + B QATZ
gntl s+l | antl -n - —n
62S(nAtjAT Ri) ~ 18700, — 2850 +80, 180, - 280+ 4,
or? iy 1 2 (Ar;)? 2 (Ar;)?

The one-sided discretization for the first space derivatives are:

oS —330,; +457, — 5y,
At)))
or oy (WAL 0, By) ~ 2Ar
0S5 SN2 — 48N, 1, T 3SN,
At N A ~ x A4 x ’ x,t
or o ri) & 2Ar

The reaction-diffusion equation is:

AtD 2 2
~n+1 S ~n+1 ~TL+1 ~n+1
5 _72(Ar)2 {(1—3,) §i0) — 25 <1+j> J+1}

- AtDg 2 -n -
5+ 20 [0 D2s s (7))
—At v (37T I(nAt) Z(jAri, R;)

The boundary condition at r = 0 gets discretized as
=35y 25t L an Tt =0
The continuity conditions at r = R; are:

5y =3N, forie€{1,2,---, Ng}
N,

g Z% Gty 28t =3) =8 =) vi(8h, 0 + 28R, 1, — 3R,)
=1

where v; = v3£1)3[‘1§63] N2Ar;

The initial condition at the surface of the particles are

5,(0) = So
59, =0for0<j<N,

1.6.2 The Numerical Implementation

We stack the vectors and explicitely replace s = S%, ;. so the vector has size NoNg + 1. We will use the notation
S?H‘Nx = 5?2 and 57VmNR+1 = sp.

For each time step, we must solve:
(I4 A)F"T = (I — A)7" + Atd"

As the matrices are fixed (do not depend on the time variable), they can be computed and stored. A PLU factorization
(Permutation Lower Upper) is computed for efficiently solve the equation in each time step.

1.6. Implementation 9

pypsdier, Release 1.1.1

The vectors and matrices are defined as:

"

sn
(Nc_l)Nz"rl

s™
(No—1)Ny+2

Sn
(Ne—1)Np+N,—3

S’ﬂ
(Ne—1)Np+N,—2

Sn
(Ne—1)Np+N,—1

n
SNRrN.+1

n
50,1
n
81,1
n
82,1

n
SN,—3,1

n
SN,—2,1

n
SN,—1,1

n
SN,—3,N.

n
SN,—2,N.

n
SN,—1,N.

10

Chapter 1. Try it out!

pypsdier, Release 1.1.1

r -3 2 1
azyn ba1 c21
az1 b3 3,1
aN,—3,1 sz—S,l CN,—3,1
an,—21 bn,—21 CN,—2.1
an,—11 bn,—1,1
-3 2 1
az Ny banp CoNg
a3 Ny b3ng C3,Ng
aN,-3,Nr ON,—3Nr CN,—3,N
anN,—2,Ng ON,—2.N
AN, —1,N
- N —2m -1
0
V(syq) I(nAt) Z(1Ar, Ry)
V(3)1) I(nAt) Z(QA’I“l,Rl)

V(S}ilszs,l) I(nAt) Z(N —xz — 3)Ary, Ry)

V(s}{,mfz’l)l(nAt) Z((N —x—2)Ar1, Ry)

V(s?{,wfm)l(nAt) Z((N —x—1)Ar1,Ry)

Ik

1.7 Publications

1.7.1 Articles

0
V(SZNC) I(nAt) Z(1Arn,, RN,)
V(SS’NC) I(nAt) Z(2Ary,, RN,)
V(sy,—sn.I(nAt) Z((Ny — 3)Arn,, Ry,)
V(sy,—on.I(nAL) Z((Ny — 2)Arn,, Ry,)
V(an,—l,NcI(nAt) Z((Ny — 1)Arn,, Rn,)
0

List of articles related to pypsdier, from most recent to oldest.

Catalysts 2019, 9(11), 930.

* Title: Estimation of the effectiveness factor for immobilized enzyme catalysts through simple conversion assay.

e Authors: Valencia, P., Ibafiez, F.
e Link: https://doi.org/10.3390/ca

tal9110930

* Reproducible Computation: MyBinder , Colab.

1.7. Publications

11

https://doi.org/10.3390/catal9110930

pypsdier, Release 1.1.1

Mathematical Methods in the Applied Sciences 2019, 42:4170-4183.

* Title: An inverse problem for an immobilized enzyme model.
* Authors: Gajardo, D., Mercado, A., Valencia, P.

 Link: https://doi.org/10.1002/mma.5637

* Reproducible Computation: MyBinder , Colab.

New Biotechnology 29(2), 218-226, 2012.

Title: Batch reactor performance for enzymatic synthesis of cephalexin: Influence of catalyst enzyme loading
and particle size.

e Authors: Valencia, P., Flores, S., Wilson, L., Illanes,
Link: http://dx.doi.org/10.1016/j.nbt.2011.09.002

* Reproducible Computation: MyBinder , Colab.

Applied Biochemistry and Biotechnology, September 2011, Volume 165, Issue 2, pp 426-441.

« Title: Effect of Internal Diffusional Restrictions on the Hydrolysis of Penicillin G: Reactor Performance and
Specific Productivity of 6-APA with Immobilized Penicillin Acylase.
¢ Authors: Pedro Valencia, Sebastian Flores, Lorena Wilson, Andrés Illanes.

* Link: http://dx.doi.org/10.1007/s12010-011-9262-7
* Reproducible Computation: MyBinder , Colab.

Journal of Biotechnology, Volume 150, Supplement, November 2010, Pages 77-78

Title: Batch reactor performance for enzymatic synthesis of cephalexin: influence of catalyst enzyme loading
and particle size.

¢ Authors: Pedro Valencia, Sebastian Flores, Lorena Wilson, Andrés Illanes.

Link: http://dx.doi.org/10.1016/j.jbiotec.2010.08.200

* Reproducible Computation: MyBinder , Colab.

Journal of Biotechnology, Volume 150, Supplement, November 2010, Pages 388.
* Title: Temperature effect on heterogeneous enzyme catalyzed reaction: Thie¢le modulus and effectiveness factor
analysis.
¢ Authors: Pedro Valencia, Sebastidn Flores, Alik Abakarov.
¢ Link: http://dx.doi.org/10.1016/j.jbiotec.2010.09.491
* Reproducible Computation: MyBinder , Colab.

12 Chapter 1. Try it out!

https://doi.org/10.1002/mma.5637
http://dx.doi.org/10.1016/j.nbt.2011.09.002
http://dx.doi.org/10.1007/s12010-011-9262-7
http://dx.doi.org/10.1016/j.jbiotec.2010.08.200
http://dx.doi.org/10.1016/j.jbiotec.2010.09.491

pypsdier, Release 1.1.1

Biochemical Engineering Journal, Volume 49, Issue 2, 15 April 2010, Pages 256—263.

» Title: Effect of particle size distribution on the simulation of immobilized enzyme reactor performance.
¢ Authors: Pedro Valencia, Sebastian Flores, Lorena Wilson, Andrés Illanes.

e Link: http://dx.doi.org/10.1016/j.bej.2010.01.002

* Reproducible Computation: MyBinder , Colab.

List of aditional articles related to immobilized enzyme catalysts and difusional restrictions.

Biochemical Engineering Journal, Volume 91, 129-139, 2014.

* Title: Theoretical analysis of intrinsic reaction kinetics and the behavior of immobilized enzymas system for
steady-state conditions.

¢ Authors: Praveen, T., Valencia, P., Rajendran, L.

 Link: http://dx.doi.org/10.1016/j.bej.2014.08.001

Enzyme and Microbial Technology, Volume 47, Issue 6, pp 268-276, 2010

« Title: Evaluation of the incidence of diffusional restrictions on the enzymatic reactions of hydrolysis of penicillin
G and synthesis of cephalexin.

e Authors: Pedro Valencia, Lorena Wilson, Carolina Aguirre, Andrés Illanes.
* Link: http://dx.doi.org/10.1016/j.enzmictec.2010.07.010

Electronic Journal of Biotechnology, Volume 13, Issue 1, 15 January 2010, Pages 256-263.

« Title: Diffusional restrictions in glyoxyl-agarose immobilized penicillin G acylase of different particle size and
protein loading.

¢ Authors: Andrés Illanes, José M. Gonzalez, Juan M. Gémez, Pedro Valencia, Lorena Wilson.

¢ Link: http://dx.doi.org/10.2225/vol13-issuel-fulltext-12

1.7.2 Seminars

List of seminar publications, listed from most recent to oldest.

14th International Biotechnology Symposium, Rimini, Italy, September 2010.

Title: Batch reactor performance for enzymatic synthesis of cephalexin: influence of catalyst enzyme loading
and particle size.

¢ Authors: Pedro Valencia, Sebastian Flores, Lorena Wilson, Andrés Illanes.
* Link: http://www.ibs2010.org
* Reproducible Computation: MyBinder , Colab.

1.7. Publications 13

http://dx.doi.org/10.1016/j.bej.2010.01.002
http://dx.doi.org/10.1016/j.bej.2014.08.001
http://dx.doi.org/10.1016/j.enzmictec.2010.07.010
http://dx.doi.org/10.2225/vol13-issue1-fulltext-12
http://www.ibs2010.org

pypsdier, Release 1.1.1

XXII Congreso Iberoamericano de Catalisis (CICAT), Chile, Vifia del Mar, September 2010.

Title: Efecto de las restricciones difusionales internas sobre la reaccion de sintesis de cefalexina con penicilina
acilasa inmovilizada.

Authors: Pedro Valencia, Sebastian Flores, Lorena Wilson, Andrés Illanes.
Link: http://www.cicat2010.cl/

Reproducible Computation: MyBinder , Colab.

1.8 Documentation for Users

As a regular user of pypsdier, this is the only class and methods you should know and use.

class simulation_interface.SimulationInterface

Bases: object

GenericSimulationLibrary is a package encapsulates a methodology and tools for reproducible simulations. The
main idea is to use python and/or jupyter notebooks to provide a lightweight and for-dummies easy “Simulation
as a Service”. The framework puts emphasis on simplicity: for the client to install and use, for the programmer
to distribute and update, and for everyone to store and reproduce results. The framework can be personalized
and extended for a specific simulation need. Link: https://pypsdier.readthedocs.io/

download (filename)
Utility to download file, using colab.

export_xls (filename)
Creates an excel file and saves the plot data and simulation data. It helps providing a file format that final
users might be more familiar with.

Parameters filename (string)— Name for the file.

load (filename)
Loads a simulation from a simulation file generated with the save method to restore the simulation.

Parameters filename (string)— Name for the simulation file.

new (inputs, plot_options=None)
Associates inputs and plot options to the simulation.

Parameters

* inputs (dict)— The inputs that will be used in the simulation. This can be completely
personalized.

* plot_options (dict, optional)- The plotoptions, defaults to None

plot (figsize=(12, 8), plot_type="all’, filename=", display=True)
Conditionally imports the matplotlib library, and if possible, plots the experimental data given in
plot_options, and the simulation data.

Parameters
* plot_type—?
o figsize (tuple, optional) - Size of the figure

* filename (str, optional)- Filename to save the graph. If not provided, figure is
not saved. Defaults to .

14

Chapter 1. Try it out!

http://www.cicat2010.cl/
https://pypsdier.readthedocs.io/

pypsdier, Release 1.1.1

* display (bool, optional)-Boolean to show (True) or not show (False) the graph.
Defaults to False

save (filename)
Saves the current state of the simulation, with all the provided information. The created file can be used
with the load method to restore the simulation.

Parameters filename (string)— Name for the simulation file.

simulate (sim_type)
Function that encapsulates the numerical simulation. Stores the simulation internally.

Parameters sim_typle — Type of simulation required. Only two options: ode or pde.
Returns Dictionary with the results of the simulation
Return type dict

status ()
Prints out the detected configuration: environment, python and library versions.

1.9 Acknowledgements

We would like to thank:
* The python ecosystem: python and a large list of libraries (numpy, scipy, matplotlib, among many others).
* The Jupyter Notebooks: the game changer in using python interactive and documentable.
* Colab and MyBinder: for making easy to share and run jupyter notebooks.
* Read the docs: for making very easy to make and share good documentation.

* This project is based on the framework proposed by GenericSimulationLibrary.

1.10 Links and References

1.10.1 Generic Simulation Library Repositories

This library extends the GenericSimulationLibrary framework.

1.11 Documentation for developers

As a developer of pypsdier, these are the other functions that you might want to understand, re-document, extend
and/or improve.

pypsdier is based on the ideas of GeneralSimulationLibrary, a package encapsulates a methodology and tools for
reproducible simulations.

1.9. Acknowledgements 15

https://github.com/sebastiandres/GenericSimulationLibrary
https://github.com/sebastiandres/GenericSimulationLibrary
https://generalsimulationlibrary.readthedocs.io/en/latest//

pypsdier, Release 1.1.1

16 Chapter 1. Try it out!

Index

D

download () (simulation_interface.Simulationlnterface

method), 14

E

export_xls () (simula-
tion_interface.Simulationinterface ~ method),
14

L

load () (simulation_interface.SimulationInterface
method), 14

N

new () (simulation_interface.SimulationInterface
method), 14

P

plot () (simulation_interface.SimulationInterface
method), 14

save () (simulation_interface.SimulationInterface
method), 15

simulate () (simulation_interface.Simulationlnterface
method), 15

SimulationInterface (class in simula-

tion_interface), 14
status () (simulation_interface.SimulationInterface
method), 15

17

	Try it out!
	Index

